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Objectives

We propose innovative imputation method to deal with
missing data in non-stationary multivariate time series
from digital devices in N-of-1 studies.
• Missingness in both response and explanatory

variables
• Auto-correlation with past values of variables
• Non-stationarity in multi-variate time series

Introduction

Missing data is an ubiquitous problem in almost all fields
that collect data. Data imputation is commonly recom-
mended to improve estimation efficiency for quantities of
interest.
Mobile technology Mobile phones and wearable devices
allows real-time monitoring of individuals’ behavior, social
interactions, symptoms, and other health conditions. re-
sulting in the emergence of a new type of data – entangled
multivariate time series of outcome, exposure, and covari-
ates.
Existing imputation methods are either designed for
longitudinal data with limited follow-up times

• Last-observation-carried-forward
• Linear/Spline interpolation
• Multiple Imputation
• Weighted estimation equations

or for stationary time series,
• Moving average techniques
• ARIMA regression model

or for multivariate time series of i.i.d samples
• Recurrent neural networks
• Generative adversarial networks

No available approaches address the issue of missing
data in both the response variable and regressors of lagged
values of the outcome for non-stationary multivariate time
series in N-of-1 studies.

Methods – SSMimpute

SSMimpute We combine multiple imputation with
state space model to iteratively impute missing data in po-
tentially non-stationary multivariate time series
Theoretical properties of “SSMimpute” and its perfor-
mance in extensive simulations of both stationary and non-
stationary time series are evaluated under MCAR, MAR,
and MNAR.

“SSMimpute” to existing methods in non-stationary time series

We illustrate one scenario of non-stationary multivariate time series with periodic treatment effect,
random-walk baseline intercept, and time-variant effect of other variable.

Yt = β0,t + ρYt−1 + β1,tA1,t + β2,tA1,t−1 + βc,tCt + vt, vt ∼ N(0, V )

where β0,t follows a random walk, and β1,t is periodic-stable with change points at t = 400 and
t = 700, with missing rate of 50%.

MCAR MAR MNAR
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Imputation methods
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Bipolar Longitudinal Smartphone Study

We estimate the association between the degree of outgoing calls and texts and the negative mood,
controlling physical activity and temperature.

• Outcome: negative mood (Yt)
• Exposures: degree of outgoing calls (A1,t) and outgoing texts (A2,t)
• Covariates: temperature (Tempt), past physical activity (PAt)

Yt = β0,t + ρtYt−1 + β11,tAcalls,t + β12,tAcalls,t−1 + β21,tAtexts,t + β22,tAtexts,t−1
+ βtemp,tTempt + βPA,tPAt + vt

Figure: Negative mood (Yt) of one bipolar patients, followed from from 03/05/2018 to 2020/20/10 (708 days)

SSMimpute (n=542) multiple imputation (n=542)
Estimate 90% CI Estimate 90% CI

interceptt (random walk) (random walk)
ρt (for Yt−1) 0.64 (0.57,0.71) 0.11 (-0.14,0.36)

β11,t -0.14 (-0.27,0.00) -0.11 (-0.23,0.01)
β12,t 0.00 (-0.12,0.12) -0.05 (-0.16,0.07)

β21,t (period 1) -0.03 (-0.30,0.24) -0.02 (-0.27,0.23)
β21,t (period 2) -0.49 (-0.78,-0.21) -0.38 (-0.65,-0.1)

β22,t -0.17 (-0.37,0.03) -0.23 (-0.42,-0.05)
βPA,t (period 1) -5.87 (-16.73,5.00) -3.94 (-18.65,10.76)
βPA,t (period 2) -12.19 (-21.27,-3.11) -16.96 (-32.94,-0.98)
βPA,t (period 3) 2.31 (-1.00,5.62) 1.64 (-3.97,7.25)

βtemp,t -0.01 (-0.03,0.01) -0.01 (-0.03,0.01)
• “degree of outgoing calls” is significantly associated with decrease in negative mood.
• Identified a changepoint for the effect of “degree of outgoing texts” on negative mood

around 06/14/19: no effect in period I and negative effect in stage II.
• Identified two changepoints for the effect of “physical activity” on negative mood around

08/15/18 and 11/27/18: no effect in period I and III and negative effect in period II.

Conclusions

We proposed a novel state-space model based multiple imputation method for non-stationary multi-
variate time series, which is able to identify changepoints in the effect of covariates over time.
The proposed imputation method provides unbiased and more efficient estimation for non-stationary
time series with missing outcomes.


