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Infectious disease and vaccination
Distinct mechanisms of infectious disease interventions/vaccinations,

Direct protection for the treated individuals:
- direct effect, vaccine efficacy, susceptibility effect...

Indirect protection for the surrounding individuals:
- indirect effect, herd immunity, contagion effect, infectiousness
effect...

Vaccines for Polio, Influenza, HIV/AIDS, Malaria and etc.

Direct protection Indirect protection
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Why infectious disease is difficult to study?

Research on transmission of infectious disease has some unique features
and challenges.

The infection outcome of one individual also depends on others’
treatments, conditional on other individuals being infected.
– Interference

The outcome of interest (infection) is transmissible, so outcomes are
not independent from each other. – Contagion

The infection times of others compose an important factor for the
infection outcome – Exposure to infection
Earlier exposure to infectious individual (higher ”exposure to
infection”) increases the risk of infection.

One infection outcome depends on (i) its own treatment, (ii)
treatments of others, and (iii) infection times of others.
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Bias due to differential “exposure to infection”

Direct comparisons of treated and untreated individuals may not be valid
due to differential “exposure to infection” [1,2,3].

E [Yi |Xi = 1]− E [Yi |Xi = 0]

For example, if vaccinated individuals get infected later in general,
then later infected and vaccinated subjects face higher exposure to
infection, comparing to earlier infected and unvaccinated individuals.
→ not a fair comparison !

Can randomization solve the problem?

No. Differential “exposure to infection” due to others’ infection
happens after randomization.

[1] Longini et al. Statistical inference for infectious diseases: risk-specific household and community transmission parameters.
American Journal of Epidemiology, 128(4):845–859, 1988.
[2] Halloran et al. Direct and indirect effects in vaccine efficacy and effectiveness. American Journal of Epidemiology,
133(4):323–331, 1991.
[3] Halloran et al. Exposure efficacy and change in contact rates in evaluating prophylactic HIV vaccines in the field. Statistics
in Medicine, 13(4):357–377, 1994.
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Challenges for causal identification
Consider a interconnected four individuals with treatment (X1,X2,X3,X4)
and infection outcome (Y1,Y2,Y3,Y4).

X1 Y1

X2 Y2

X3 Y3

X4 Y4

interference

contagion

The graph is not an acyclic directed graph (DAG).
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Propose new methodology to evaluate interventions effects
for contagious outcomes

We will provide new methods that

Do not depend on certain study design or randomization strategy

Apply to various transmission dynamics, cluster size and observational
time

Incorporate individual- and cluster-level covariates

Yield biologically meaningful causal estimands for direct and indirect
protection provided by interventions

Allow flexible statistical inferential framework, ranging from
parametric, semi-parametric to non-parametric estimation
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Notation

Consider a cluster of n individuals, i = 1, . . . , n, denote

Treatment assignment: X = (X1, . . . ,Xn)

Infection time: T = (T1, . . . ,Tn)

Infection outcome: Y(t) = (Y1(t), . . . ,Yn(t)),

where Yi (t) = 1{Ti < t}
For a focal subject i , denote

Others’ treatments: X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn)

Others’ infection times: T(i) = (T1, . . . ,Ti−1,Ti+1, . . . ,Tn)

Others’ infection history: H(i)(t) = {Yj(s) : 0 ≤ s < t, j 6= i},
or equivalently, H(i)(t) = {Tj ;Tj < t, j 6= i}

Note: H(i) = {Yj(s) : s ≥ 0, j 6= i}, or equivalently, H(i) = T(i)
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Notation

Define Ti (X = x,H(i) = h(i)) and Yi (t;X = x,H(i) = h(i)) as the
counterfactual infection time and outcome of i under a joint treatment x
and a deterministic infection history h(i) of other individuals, respectively.

Goal 1

Identify Ti (x,h(i)) or Yi (t; x,h(i)) under joint intervention (x,h(i)).

(i) own treatment: Xi = xi

(ii) others’ treatments: X(i) = x(i)

(iii) others’ infection times: h(i)
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Main Result: Exposure-controlled potential outcome

Goal 1

Identify Ti (x,h(i)) or Yi (t; x,h(i)) under joint intervention (x,h(i)).

Theorem: Identification of exposure-controlled potential outcomes

Under conventional assumptions in causal inference,

E
[
Yi (t; h(i), x)

∣∣L = l
]
=

n−1∑
j=0

[
F
I
j
i
(min{t, t j+1

(i) } − t j(i) | x, h(i), l
) j−1∏
k=0

(
1− FI ki

(tk+1
(i) − tk(i) | x, h(i), l)

)]

where F
I ji

(s | x,h(i), l) –distribution of I ki (x,h(i)) – is identifiable by

standard results from competing risks.
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Main Result: Exposure-marginalized potential outcomes

H∗(i)(x): the random history of infection times in individuals other
than i under X = x, in an otherwise identical group of n − 1
individuals in which i is absent, or cannot transmit infection.

Goal 2

Identify Yi

(
t; x,H∗(i)(x(i))

)
under joint intervention x and H∗(i)(x(i)).

Theorem: Identification of exposure-marginalized potential outcomes

Under conventional assumptions in causal inference,

E
[
Yi

(
t; xi , x(i),H∗(i)(x′(i))

)
|L = l

]
=

∫
E[Yi (t; xi , x(i), h(i))|L = l]dG∗(i)(h(i)|x′(i), l(i))

where x′(i) may (not) equal to x(i), and G ∗(i)(h(i)|x(i), l(i)) – the distribution

of H∗(i)(x(i)) – is identified by standard results from competing risks.
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Simulation: causal identification for potential outcomes

We simulate N=100,000 clusters of three individuals with constant
exogenous and internal infection hazards, without covariates.
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Causal estimands: Exposure-marginalized causal estimands

Exposure-marginalized (natural) causal estimands

Susceptibility effect

SEi (t, x(i)) = E
[
Yi

(
t; 1, x(i),H∗(i)(x(i))

)
− Yi

(
t; 0, x(i),H∗(i)(x(i))

)]
Infectiousness effect

IEi (t, xi , x(i)) = E
[
Yi

(
t; xi , 1,H(i)(x(i))

)
− Yi

(
t; xi , 0,H(i)(x(i))

)]
Contagion effect

CEi (t, xi , x(i), x
′
(i)) = E

[
Yi

(
t; xi , x(i),H∗(i)(x(i))

)
− Yi

(
t; xi , x(i),H∗(i)(x′(i))

)]
Susceptibility effect → shows if the vaccine protects treated individual

Infectiousness effect → shows if the vaccine decreases transmission
ability

Contagion effect → shows if the disease is contagious

Xiaoxuan Cai (Columbia) Causal inference in infectious disease March 16, 2021 12 / 20



Traditional estimands on the cluster level

Direct effect:

DE (t) = E[Yi (t)|Xi = 1]− E[Yi (t)|Xi = 0]

Indirect effect:

IDE (t) =
∑
|x(i)|= n

2

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))

−
∑
|x(i)|=0

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))

Xiaoxuan Cai (Columbia) Causal inference in infectious disease March 16, 2021 13 / 20



Simulation: Estimations of causal estimands

Cluster Treatment
Probability estimands

ĈE(t, 0, 0, 1) ŜE(t, 0) ˆIE(t, 0, 0) DE(t) IDE(t)

Constant external and internal hazards

2 Obs. 0.005 -0.015 -0.036 -0.013 -0.036
Bernoulli 0.004 -0.015 -0.036 -0.014 -0.038
Block - - - 0.025 -
Cluster - - - -0.048 -

4 Obs. 0.026 -0.014 -0.084 -0.012 -0.073
Bernoulli 0.025 -0.013 -0.082 -0.012 -0.063
Block - - - 0.016 -
Cluster - - - -0.099 -

8 Obs. 0.068 -0.013 -0.131 -0.010 -0.088
Bernoulli 0.069 -0.014 -0.133 -0.010 -0.096
Block - - - 0.010 -
Cluster - - - -0.154 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Biased DE (t) over time under different cluster sizes
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How do epidemiologists understand infectious disease
transmission?

1 2 1 2
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Cox-type hazard model for pairwise infection times

Assume previously infected individuals, along with a exogenous source of
infection, impose independent and competing risks of disease
transmission to the remaining uninfected individuals. For all i and all
infected individual j , j 6= i , we consider a Cox-type hazard model for:

External source of infection:

λ0i (t | xi , li ) = α(t) exp[β1xi + θT1 li ]

Internal source of infection from infectious j to yet-uninfected i :

λji (t | xi , li ) = γ(t − tj) exp[β1xi + β2xj + θT1 li + θT2 lj ]

β1 < 0 means a beneficial treatment effect on treated individuals.
β2 < 0 means a decreased transmission risk due to vaccination.
γ(t) > 0 means an infectious disease.
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Simulation: Estimations of causal estimands

Cluster Treatment
Hazard estimands Probability estimands

β̂1 β̂2 ĈE ŜE ˆIE DE(t) IDE(t)

Constant external and internal hazards

2 Obs. -0.119 -2.271 0.005 -0.015 -0.036 -0.013 -0.036
Bernoulli -0.115 -2.334 0.004 -0.015 -0.036 -0.014 -0.038
Block -0.102 -2.364 0.004 -0.013 -0.036 0.025 -
Cluster -0.103 -2.288 0.004 -0.013 -0.035 -0.048 -

4 Obs. -0.105 -2.368 0.026 -0.014 -0.084 -0.012 -0.073
Bernoulli -0.105 -2.286 0.025 -0.013 -0.082 -0.012 -0.063
Block -0.116 -2.278 0.026 -0.015 -0.082 0.016 -
Cluster. -0.107 -2.323 0.025 -0.014 -0.083 -0.099 -

8 Obs. -0.100 -2.287 0.068 -0.013 -0.131 -0.010 -0.088
Bernoulli -0.106 -2.331 0.069 -0.014 -0.133 -0.010 -0.096
Block -0.111 -2.311 0.069 -0.014 -0.132 0.010 -
Cluster -0.120 -2.299 0.070 -0.016 -0.132 -0.154 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Summary

We articulate the causal structure between individuals’ treatments
and outcomes in infectious disease, and illustrate the identification
strategy for the potential outcomes under contagion, in the example
of inter-connected clusters.

A class of fundamental (controlled- and marginalized-) causal
estimands for the susceptibility, infectiousness and contagion effect of
vaccines are proposed, and comprehensively compared to popular
estimands in contemporary epidemiology.

We provide the identification of causal estimands non-parametrically,
and further apply a generalized Cox-type transmission hazard model
to facilitate the inference of causal estimands.

We promote hazard ratio as alternative causal estimands for the
susceptibility and infectiousness effect, and compared them to existing
estimands for vaccine efficacy.
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