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Infectious disease and vaccination
Distinct mechanisms of infectious disease interventions/vaccinations,

Direct protection for the treated individuals:
- direct effect, vaccine efficacy, susceptibility effect...

Indirect protection for the surrounding individuals:
- indirect effect, herd immunity, contagion effect, infectiousness
effect...

Vaccines for Polio, Influenza, HIV/AIDS, Malaria and etc.

Direct protection Indirect protection
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Why infectious disease is difficult to study?

Research on transmission of infectious disease has some unique features
and challenges.

The infection outcome of one individual also depends on others’
treatments, conditional on other individuals being infected. –
Interference

The outcome of interest (infection) is transmissible, so outcomes are
not independent from each other. – Contagion

The infection times of others compose an important factor for the
infection outcome – exposure to infection

Individuals’ interaction along the transmission process reveals
essential information about transmission mechanism.

One infection outcome depends on (i) its own treatment, (ii)
treatments of others, and (iii) infection times of others.
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Challenges for causal identification
Consider a interconnected four individuals with treatment (X1,X2,X3,X4)
and infection outcome (Y1,Y2,Y3,Y4).

X1 Y1

X2 Y2

X3 Y3

X4 Y4

interference

contagion

The graph is not an acyclic directed graph (DAG).

Xiaoxuan Cai (Yale) Causal inference in infectious disease August 6, 2020 JSM 4 / 23



How to solve the problem?

Can randomization solve the problem?

Even under randomization, direct comparisons of treated and
untreated individuals may not be valid due to differential “exposure to
infection”.

For example, if vaccinated individuals get infected later in general,
then later infected, vaccinated subjects face higher exposure to
infection, comparing to unvaccinated, earlier infected individuals.
→ not a fair comparison !
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Propose new methodology to evaluate interventions effects
for contagious outcomes

We will provide new methods that

Do not depend on certain study design or randomization strategy

Apply to various transmission dynamics, cluster size and observational
time

Incorporate individual- and cluster-level covariates

Yield biologically meaningful causal estimands for direct and indirect
protection provided by interventions

Allow flexible statistical inferential framework, ranging from
parametric, semi-parametric to non-parametric estimation
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Notation

Consider a cluster of n individuals, i = 1, . . . , n

Treatment assignment: X = (X1, . . . ,Xn)

Infection time: T = (T1, . . . ,Tn)

Infection outcome: Y(t) = (Y1(t), . . . ,Yn(t))
,where Yi (t) = 1{Ti < t}

Others’ treatments: X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn)

Others’ infection times: T(i) = (T1, . . . ,Ti−1,Ti+1, . . . ,Tn)

Others’ infection history: H(i) = {Yj(s) : s ≥ 0, j 6= i}
, or H(i) = T(i)
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Notation

Define Ti (X = x,H(i) = h(i)) and Yi (t; X = x,H(i) = h(i)) as the
counterfactual infection time and outcome of i under a joint treatment x
and a deterministic infection history h(i) of other individuals, respectively.

Goal 1

Identify Ti (h(i), x) or Yi (t; h(i), x) under joint intervention (h(i), x).

(i) own treatment: Xi = xi

(ii) others’ treatments: X(i) = x(i)

(iii) others’ infection times: h(i)
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Clusters of 4 individuals

case 1 case 2 case 3 case 4

0 t(1) t(2) t(3)

Ti = I0i Ti = I1i + t(1)
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Clusters of 4 individuals

case 1 case 2 case 3 case 4
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Decomposition of Ti(x, h(i))

For a deterministic h(i) with t(i), reorder infection times as

t(i) = (t1(i), t
2
(i), . . . , t

n−1
(i) ), then we rewrite

Ti (x, h(i))

=


I 0i (x, h(i)) if I 0i (x, h(i)) < t1(i)
t1(i) + I 1i (x, h(i)) if I 0i (x, h(i)) ≥ t1(i), I

1
i (x, h(i)) < t2(i) − t1(i)

...
...

tn−1(i) + I n−1i (x, h(i)) if I 0i (x, h(i)) ≥ t1(i), . . . , I
n−2
i (x, h(i)) ≥ tn−1(i) − tn−2(i)

where I ki (x, h(i)) is the potential additional time to infection after the kth

infection at tk(i).
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Main Result: Exposure-controlled potential outcome

Theorem: Identification of exposure-controlled potential outcomes

Under conventional assumptions in causal inference,

E
[
Yi (t; h(i), x)

∣∣ L = l
]
=

n−1∑
j=0

[
F
I
j
i
(min{t, t j+1

(i) } − t j(i) | x, h(i), l
) j−1∏
k=0

(
1− FI ki

(tk+1
(i) − tk(i) | x, h(i), l)

)]

where F
I ji

(s | x, h(i), l) is the distribution of the latent waiting times to

infection I ki (x, h(i)) and is identified by

F
I
j
i
(s|x, h(i), l) = 1− exp

[
−
∫ t

j
(i)

+s

t
j
(i)

f ji (u|x, h(i), l)
S j
i (u|x, h(i), l)

du
]
for j = 0, . . . , n − 1

where f ji (u|x, h(i), l) and S j
i (u|x, h(i), l) are identifiable by standard results

from competing risks.
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The natural distribution of the deterministic h(i)

Consider a cluster of n individuals, i = 1, . . . , n.

H∗(i)(x): the random history of infection times in individuals other
than i under X = x, in an otherwise identical group of n − 1
individuals in which i is absent, or cannot transmit infection.

H∗(i)(x) is equivalent to H(i)(x(i)) in distribution for i ’s infection.

X Yi H∗
(i) Yi

Define Yi (t; x,H∗(i)(x(i))) as the counterfactual infection outcome i under
a joint treatment x and the natural distribution of h(i) under x(i).

Goal 2

Identify Yi

(
t; x,H∗(i)(x(i))

)
under joint intervention x and H∗(i)(x(i)).
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Main Result: Exposure-marginalized (Natural) potential
outcomes

Theorem: Identification of exposure-marginalized potential outcomes

Under conventional assumptions in causal inference,

E
[
Yi

(
t; xi , x(i),H∗(i)(x(i))

)
|L = l

]
=

∫
E[Yi (t; xi , x(i), h(i))|L = l]dG∗(i)(h(i)|x(i), l(i))

where G ∗(i)(h(i)|x(i), l(i)) is the distribution of the potential infection

history H∗(i)(x(i)) given L(i) = l(i) and can be identified by

dG∗(i)(h(i)|x(i), l(i)) =
n−1∏
j=1

[
f
I
j−1

ϕ
j
i

(
t j(i) − t j−1

(i) |x, h
i

(ϕ
j
i )
, l
) n−1∏
k=j+1

S
I
j−1

ϕk
i

(
t j(i) − t j−1

(i) |x, h
j

(ϕk
i )
, l
)]

where f ji (u|x, h(i), l) and S j
i (u|x, h(i), l) are identifiable by standard results

from competing risks.
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Simulation: causal identification for potential outcomes

We simulate N=100,000 clusters of three individuals with constant
exogenous and internal infection hazards, without covariates.
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Causal estimands: Exposure-controlled causal estimands

Exposure-controlled causal estimands

Susceptibility effect

SEi (t, x(i), h(i)) = E[Yi (t; xi = 1, x(i), h(i))− Yi (t; xi = 0, x(i), h(i))]

Infectiousness effect

IEi (t, xi , h(i)) = E[Yi (t; xi , x(i) = 1, h(i))− Yi (t; xi , x(i) = 0, h(i))]

Contagion effect

CEi (t, x, h(i), h
′
(i)) = E[Yi (t; x, h(i))− Yi (t; x, h′(i))]

Susceptibility effect → shows if the vaccine protects treated individual

Infectiousness effect → shows if the vaccine decreases transmission
ability

Contagion effect → shows if the disease is contagious
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Causal estimands: Exposure-marginalized causal estimands

Exposure-marginalized (natural) causal estimands

Susceptibility effect

SEi (t, x(i)) = E
[
Yi

(
t; 1, x(i),H∗(i)(x(i))

)
− Yi

(
t; 0, x(i),H∗(i)(x(i))

)]
Infectiousness effect

IEi (t, xi , x(i)) = E
[
Yi

(
t; xi , 1,H(i)(x(i))

)
− Yi

(
t; xi , 0,H(i)(x(i))

)]
Contagion effect

CEi (t, xi , x(i), x
′
(i)) = E

[
Yi

(
t; xi , x(i),H∗(i)(x(i))

)
− Yi

(
t; xi , x(i),H∗(i)(x′(i))

)]
Other commonly used estimators:

Direct effect: DE(t) = E[Yi (t)|Xi = 1]− E[Yi (t)|Xi = 0]

Indirect effect: IDE(t) =
∑
|x(i)|= n

2

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))

−
∑
|x(i)|=0

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))
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Simulation: Estimations of causal estimands

Cluster Treatment
Probability estimands

ĈE(t, 0, 0, 1) ŜE(t, 0) ˆIE(t, 0, 0) DE(t) IDE(t)

Constant external and internal hazards

2 Obs. 0.005 -0.015 -0.036 -0.013 -0.036
Bernoulli 0.004 -0.015 -0.036 -0.014 -0.038
Block 0.004 -0.013 -0.036 0.025 -
Cluster 0.004 -0.013 -0.035 -0.048 -

4 Obs. 0.026 -0.014 -0.084 -0.012 -0.073
Bernoulli 0.025 -0.013 -0.082 -0.012 -0.063
Block 0.026 -0.015 -0.082 0.016 -
Cluster 0.025 -0.014 -0.083 -0.099 -

8 Obs. 0.068 -0.013 -0.131 -0.010 -0.088
Bernoulli 0.069 -0.014 -0.133 -0.010 -0.096
Block 0.069 -0.014 -0.132 0.010 -
Cluster 0.070 -0.016 -0.132 -0.154 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Cox-type hazard model for pairwise infection times

Assume previously infected individuals, along with a exogenous source of
infection, impose indepdendent and competing risks of disease
transmission to the remaining uninfected individuals.
For all i and all infected individual j , j 6= i , we consider a Cox-type hazard
model for the pairwise infection times:

External source of infection:

λ0i (t | xi , li ) = α(t) exp[β1xi + θT1 li ]

Internal source of infection from infectious j to yet-uninfected i :

λji (t | xi , li ) = γ(t − tj) exp[β1xi + β2xj + θT1 li + θT2 lj ]
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Stochastic model for disease transmission

λi(t) =
!
eβ1xi+θT

1 li
"
×

#
α(t) +

$
j ∕=i yj(t)γ(t− Tk)e

β2xj+θT
2 lxj

%

time-varying hazard
outside household

time-varying hazard
from infectious household members

hazardi(t) = [susceptibilityi]× [total exposure to infection(t)]

direct protection
of vaccination

indirect protection
of vaccination

α(t) is exogenous hazard of infection, γ(t) is endogenous hazard of
transmission between individuals

β1 is for susceptibility effect, β2 is for infectiousness effect

θ1 and θ2 are covariate effects of susceptibility and infectiousness
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New vaccine estimands based on hazards

Controlled hazard ratio vaccine effects

Susceptibility hazard ratio:

HSEC (t, x(i), h(i), l) =
λi (t | 1, x(i), h(i), l)

λi (t | 0, x(i), h(i), l)
= eβ1

Infectiousness hazard ratio:

HIEC (t, hj , h
′
j , x(j), h(i,j), l) =

λi (t|1,x(j),h′j ,h(i,j),l)−λi (t|1,x(j),hj ,h(i,j),l)

λi (t|0,x(j),h′j ,h(i,j),l)−λi (t|0,x(j),hj ,h(i,j),l)
= eβ2

where yj(t) = 1 as specified in h′j , and yj(t) = 0 as specified in hj .

Contagion cumulative hazard ratio:

HCEC (t; h
′′

j , h
′
j , h(i,j), l) =

∫ t
0

[
λi (u;0,h

′
j (t),h(i,j),l)−λi (u;0,hj (t),h(i,j),l)

]
du∫ t

0

[
λi (u;0,h

′′
j (t),h(i,j),l)−λi (u;0,hj (t),h(i,j),l)

]
du

=

∫ t
t′
j
γ(u)du∫ t

t′′
j
γ(u)du

where yj(t) = 1 as specified in h′j , and yj(t) = 0 as specified in hj .
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Simulation: Estimations of causal estimands

Cluster Treatment
Hazard estimands Probability estimands

β̂1 β̂2 ĈE ŜE ˆIE DE(t) IDE(t)

Constant external and internal hazards

2 Obs. -0.119 -2.271 0.005 -0.015 -0.036 -0.013 -0.036
Bernoulli -0.115 -2.334 0.004 -0.015 -0.036 -0.014 -0.038
Block -0.102 -2.364 0.004 -0.013 -0.036 0.025 -
Cluster -0.103 -2.288 0.004 -0.013 -0.035 -0.048 -

4 Obs. -0.105 -2.368 0.026 -0.014 -0.084 -0.012 -0.073
Bernoulli -0.105 -2.286 0.025 -0.013 -0.082 -0.012 -0.063
Block -0.116 -2.278 0.026 -0.015 -0.082 0.016 -
Cluster. -0.107 -2.323 0.025 -0.014 -0.083 -0.099 -

8 Obs. -0.100 -2.287 0.068 -0.013 -0.131 -0.010 -0.088
Bernoulli -0.106 -2.331 0.069 -0.014 -0.133 -0.010 -0.096
Block -0.111 -2.311 0.069 -0.014 -0.132 0.010 -
Cluster -0.120 -2.299 0.070 -0.016 -0.132 -0.154 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Summary

We articulate the causal structure between individuals’ treatments
and outcomes in infectious disease, and illustrate the identification
strategy for the potential outcomes under contagion, in the example
of inter-connected clusters.

A class of fundamental (controlled- and marginalized-) causal
estimands for the susceptibility, infectiousness and contagion effect of
vaccines are proposed, and comprehensively compared to popular
estimands in contemporary epidemiology.

We provide the identification of causal estimands non-parametrically,
and further apply a generalized Cox-type transmission hazard model
to facilitate the inference of causal estimands.

We promote hazard ratio as alternative causal estimands for the
susceptibility and infectiousness effect, and compared them to existing
estimands for vaccine efficacy.
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