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Infectious disease and vaccination

Direct protection for the treated individuals:
- direct effect, vaccine efficacy, susceptibility effect, ...

Indirect protection for the surrounding individuals:
- indirect effect, herd immunity, contagion effect, infectiousness
effect, ...

(Examples: vaccines for Polio, Influenza, HIV/AIDS, Malaria, and etc).

Direct protection Indirect protection
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How epidemiologists understand disease transmission

For a focal individual i , the risk of infection increases as more neighbors
become infectious and depend on neighbors’ vaccination status.
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One infection outcome depends on (i) its own treatment, (ii)
treatments of others, and (iii) infection times of others (e.g. t1, t2).

Xiaoxuan Cai (Ohio State) Causal inference in infectious disease August 11, 2022 3 / 17



Why is infectious disease difficult to study in causal
inference?

1 Interdependence of outcomes and treatments across subjects

2 Stochastic processes of “exposure to infection”

3 Bias due to differential “exposure to infection”

Consider a interconnected three individuals with treatments (X1,X2,X3)

and infection outcomes (Y1,Y2,Y3).

X1 Y1

X2 Y2

X3 Y3

interference

contagion

The infection outcome of one individual depends on others’ treatments
The infection outcome of one individual depends on other’s outcomes, since
it is transmissible.

Bidirectional arrows causes problems in causal identification
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Why is infectious disease difficult to study in causal
inference?

1 Interdependence of outcomes and treatments across subjects
2 Stochastic processes of “exposure to infection”

▶ “Exposure to infection” is determined by stochastic infection outcomes of
others, whose distribution depends on their treatments.

3 Bias due to differential “exposure to infection”
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Exposure to infection

For example, earlier infections of neighbors (smaller t1 and t2) or higher
infectiousness due to unvaccination (bigger jumps) increases overall “exposure
to infection” and consequently infection risk.
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Why is infectious disease difficult to study in causal
inference?

1 Interdependence of outcomes and treatments across subjects

2 Stochastic processes of “exposure to infection”

3 Bias due to differential “exposure to infection”

Can we directly compare treated and untreated individuals using
randomization?

E [Yi |Xi = 1]− E [Yi |Xi = 0]

0

unvaccinated gets
infected earlier

vaccinated gets
infected later

infected &
vaccinated

infected &
unvaccinated

For example, vaccinated individuals endure higher exposure to
infection, which is not a fair comparison. → Effect is under-estimated!

NO! It may be biased due to differential “exposure to infection”. [1,2,3].
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So how to solve the causal identification problem

for infectious disease outcomes?
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Decompose infection process regarding different orders
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Decompose infection process regarding different orders
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Notation

Subject i’s treatment: Xi

Others’ treatments: X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn)

Others’ infection history: H(i)(x(i)) = {Tj(x(i)) : j ̸= i}

Potential outcome

Identify Yi

(
t; xi , x(i),H(i)(x(i))

)
as the counterfactual infection outcome

at time t under joint treatment (xi , x(i)) and infection times of others
H(i)(x(i)) under treatments x(i),

(i) own treatment: Xi = xi

(ii) others’ treatments: X(i) = x(i)

(iii) others’ infection times: H(i)(x(i))
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Identification of exposure-marginalized potential outcomes

Causal identification
Under conventional assumptions in causal inference, the potential outcome
E
[
Yi

(
t; xi , x(i),H∗

(i)(x
′
(i))

)
|L = l

]
can be identified as

E
[
Yi

(
t; xi , x(i),H∗

(i)(x
′
(i))

)
|L = l

]
=

∫
E[Yi (t; xi , x(i), h(i))|L = l]dG∗

(i)(h(i)|x′(i), l(i))

where

E
[
Yi (t; h(i), x)

∣∣ L = l
]
=

n−1∑
j=0

[
F
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j
i
(min{t, t j+1

(i)
}−t j

(i)
| x, h(i), l

) j−1∏
k=0

(
1−FI ki

(tk+1
(i)

−tk(i) | x, h(i), l)
)]

dG∗
(i)(h(i) | x(i), ) =

n−1∏
j=1

[
f
I
j−1

φ
j
i

(
t j(i) − t j−1

(i)

∣∣ x, hi

(φ
j
i )
, l
) n−1∏
k=j+1

S
I
j−1

φk
i

(
t j(i) − t j−1

(i)

∣∣ x, hj

(φk
i )
, l
)]

FI ki
(s|x, h(i), l) = 1− exp

[
−
∫ tk(i)+s

tk
(i)

f ki (u|x, h(i), l)

Sk
i (u|x, h(i), l)

du

]
for k = 0, . . . , n − 1
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Exposure-marginalized (natural) causal estimands

Exposure-marginalized (natural) causal estimands

Susceptibility effect

SEi (t, x(i)) = E
[
Yi

(
t; 1, x(i),H∗

(i)(x(i))
)
− Yi

(
t; 0, x(i),H∗

(i)(x(i))
)]

Infectiousness effect

IEi (t, xi , x(i)) = E
[
Yi

(
t; xi , 1,H(i)(x(i))

)
− Yi

(
t; xi , 0,H(i)(x(i))

)]
Contagion effect

CEi (t, xi , x(i), x
′
(i)) = E

[
Yi

(
t; xi , x(i),H∗

(i)(x(i))
)
− Yi

(
t; xi , x(i),H∗

(i)(x
′
(i))

)]
Susceptibility effect → shows if the vaccine protects treated individual

Infectiousness effect → shows if the vaccine decreases transmission
ability

Contagion effect → shows if the disease is contagious
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Traditional causal estimands in cluster studies

Direct effect:

DE (t) = E[Yi (t)|Xi = 1]− E[Yi (t)|Xi = 0]

Indirect effect:

IDE (t) =
∑

|x(i)|= n
2

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))

−
∑

|x(i)|=0

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))

[1] Longini et al. Statistical inference for infectious diseases: risk-specific household and community transmission parameters.
American Journal of Epidemiology, 128(4):845–859, 1988.
[2] Halloran et al. Direct and indirect effects in vaccine efficacy and effectiveness. American Journal of Epidemiology,
133(4):323–331, 1991.
[3] Halloran et al. Exposure efficacy and change in contact rates in evaluating prophylactic HIV vaccines in the field. Statistics
in Medicine, 13(4):357–377, 1994.
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Simulation: true values of causal estimands

Cluster Treatment
Causal estimands

CE SE IE DE(t) IDE(t)

2 Obs. 0.004 -0.013 -0.037 -0.012 -
Bernoulli 0.004 -0.013 -0.037 -0.012 -0.037
Block - - - 0.024 -
Cluster - - - -0.049 -

4 Obs. 0.026 -0.013 -0.084 -0.011 -
Bernoulli 0.026 -0.013 -0.084 -0.011 -0.063
Block - - - 0.018 -
Cluster. - - - -0.098 -

8 Obs. 0.066 -0.013 -0.129 -0.010 -
Bernoulli 0.066 -0.013 -0.129 -0.010 -0.094
Block - - - 0.010 -
Cluster - - - -0.151 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Simulation: correlated treatment assignment under null
direct protection
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Simulation under eβ1 = 1, eβ2 = 0.1, α(t) = 0.3, and γ(t) = 3.

Xiaoxuan Cai (Ohio State) Causal inference in infectious disease August 11, 2022 12 / 17



Estimation

Treatment ĈE ŜE ˆIE ˆDE(t) ˆIDE(t)

Obs.
0.265 -0.075 -0.047 -0.105 -

(0.189,0.345) (-0.122,-0.033) (-0.088,-0.013) (-0.150,-0.036) -

Bernoulli
0.257 -0.077 -0.046 -0.102 -0.147

(0.182,0.335) (-0.124,-0.035) (-0.088,-0.013) (-0.151,-0.052) (-0.231,-0.060)

Block
- - - -0.065 -
- - - (-0.094,-0.038) -

Cluster
- - - -0.448 -
- - - (-0.566,-0.328) -

Estimation with 100 clusters of size 10 at t=0.5, when eβ1 = 0.5, eβ2 = 0.5, α(t) = 0.3,
γ(t) = 3 and eθ1 = eθ2 = 0.9. True values are SE(t = 0.5) = 0.265, IE(0.5) = −0.075,
CE(t = 0.5) = −0.048 across various treatment assignments, and IDE(t) = −0.151
under Bernoulli randomization. True values of DE(0.5) are -0.107, -0.107, -0.067, and
-0.458, respectively for Obs, Bernoulli, Block, and Cluster randomization.
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Summary

We articulate the causal structure between individuals’ treatments
and outcomes of infectious disease in a inter-connected cluster.

We illustrate the identification strategy for infectious disease potential
outcomes non-parametrically

▶ Do not depend on certain study design or randomization strategy
▶ Apply to various transmission dynamics, cluster size and observational

time
▶ Incorporate individual- and cluster-level covariates

A class of novel and biologically meaningful causal estimands for the
susceptibility, infectiousness and contagion effect of vaccines are
proposed

We provide comprehensive comparisions to popular estimands in
contemporary epidemiology
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Other relevant work and future direction

We further apply a generalized Cox-type transmission hazard model
to facilitate the inference of causal estimands parametrically or
semi-parametrically.

We promote hazard ratio as alternative causal estimands for the
susceptibility and infectiousness effect, and compared them to existing
estimands for vaccine efficacy.

Extend current research on causal identification for contagious
outcomes to more realistic scenarios, for example, relaxing
requirement on accurate infection times, accommodating incomplete
knowledge of transmission network, allowing recovering and
re-infection of outcomes.
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Thank you!
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