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Causal inference under interference

Classical causal inference assumes i.i.d realizations, which can be
inappropriate for applications when dependence exist among observed
data. This phenomenon is referred to as “interference”.

Contagion of infectious outcomes

Auto-correlation with past information in time series

Infectious disease Mobile health
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Research Outline

Causal evaluation of infectious disease interventions

Articulate causal structure of infectious outcomes in a stochastic and
interactive transmission network, in which outcomes and treatments
are all interdependent

Propose novel causal estimands for individual-level direct and indirect
vaccine effects under a general stochastic model, and provide
non-parametric, semi-parametric, or parametric causal identification
with adjustment for individual covariates.

Behavioral interventions for mental health using mobile devices

Causal inference of time-varying exposures in short- and long-term in
non-stationary multivariate time series of N-of-1 studies

Missing data imputation for non-stationary multivariate time series

Pathway decomposition and mediation analysis for non-stationary
multivariate time series.
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Causal inference for infectious disease interventions in a
inter-connected population

joint work with Forrest W. Crawford, Wen Wei Loh, Eben Kenah

References:

Xiaoxuan Cai, Wen Wei Loh, Forrest W. Crawford. (2021) Identification of Causal
intervention effects under contagion. Journal of Causal Inference, 9, 9-38. (Winner of
best paper award, ASA Section on Statistics in Epidemiology)

Xiaoxuan Cai, Eben Kenah, Forrest W. Crawford. (2020) Causal identification of

infectious disease intervention effects in a clustered population. arXiv:2105.03493
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Infectious disease and vaccination

Direct protection for the treated individuals:
- direct effect, vaccine efficacy, susceptibility effect, ...

Indirect protection for the surrounding individuals:
- indirect effect, herd immunity, contagion effect, infectiousness
effect, ...

(Examples: vaccines for Polio, Influenza, HIV/AIDS, Malaria, and etc).

Direct protection Indirect protection
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How epidemiologists understand disease transmission

For a focal individual i , the risk of infection increases as more neighbors
become infectious and depend on neighbors’ vaccination status.
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One infection outcome depends on (i) its own treatment, (ii)
treatments of others, and (iii) infection times of others (e.g. t1, t2).
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Notation

Subject i’s treatment: Xi

Others’ treatments: X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn)

Others’ infection history: H(i)(x(i)) = {Tj(x(i)) : j ̸= i}

Potential outcome

Identify Yi

(
t; xi , x(i),H(i)(x(i))

)
as the counterfactual infection outcome

at time t under joint treatment (xi , x(i)) and infection times of others
H(i)(x(i)) under treatments x(i),

(i) own treatment: Xi = xi

(ii) others’ treatments: X(i) = x(i)

(iii) others’ infection times: H(i)(x(i))
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Why is infectious disease difficult to study?

1 Interdependence of outcomes and treatments across subjects

▶ The infection outcome of one individual depends on others’ treatments
▶ The infection outcome of one individual depends on other’s outcomes,

since it is transmissible.

2 Stochastic processes of “exposure to infection” H(i)(x(i))

3 Bias due to differential “exposure to infection”

Consider a interconnected three individuals with treatment (X1,X2,X3)
and infection outcome (Y1,Y2,Y3).

X1 Y1

X2 Y2

X3 Y3

interference

contagion

Bidirectional arrows causes problems in causal identification
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Why is infectious disease difficult to study?

1 Interdependence of outcomes and treatments across subjects
2 Stochastic processes of “exposure to infection” H(i)(x(i))

▶ “Exposure to infection” is determined by stochastic infection outcomes of
others, whose distribution depends on their treatments.

3 Bias due to differential “exposure to infection”
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Exposure to infection

For example, earlier infection exposure (smaller t1 and t2) or a higher fraction of
unvaccinated infectious members (red arrows) increases “exposure to infection”
and consequently infection risk.
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Why is infectious disease difficult to study?

1 Interdependence of outcomes and treatments across subjects

2 Stochastic processes of “exposure to infection” H(i)(x(i))

3 Bias due to differential “exposure to infection”

Can we directly compare treated and untreated individuals using
randomization?

E [Yi |Xi = 1]− E [Yi |Xi = 0]

0

unvaccinated gets
infected earlier

vaccinated gets
infected later

infected &
vaccinated

infected &
unvaccinated

For example, vaccinated individuals endure higher exposure to
infection, which is not a fair comparison. → Effect is under-estimated!

NO! It may be biased due to differential “exposure to infection”. [1,2,3].
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So how to solve the causal identification problem

for infectious disease outcomes?
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Decompose infection process regarding different orders
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Decompose infection process regarding different orders
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Identification of exposure-marginalized potential outcomes

Causal identification
Under conventional assumptions in causal inference, the potential outcome
E
[
Yi

(
t; xi , x(i),H∗

(i)(x
′
(i))

)
|L = l

]
can be identified as

E
[
Yi

(
t; xi , x(i),H∗

(i)(x
′
(i))

)
|L = l

]
=

∫
E[Yi (t; xi , x(i), h(i))|L = l]dG∗

(i)(h(i)|x′(i), l(i))

where

E
[
Yi (t; h(i), x)

∣∣ L = l
]
=

n−1∑
j=0

[
F
I
j
i
(min{t, t j+1

(i)
}−t j

(i)
| x, h(i), l

) j−1∏
k=0

(
1−FI ki

(tk+1
(i)

−tk(i) | x, h(i), l)
)]

dG∗
(i)(h(i) | x(i), ) =

n−1∏
j=1

[
f
I
j−1

φ
j
i

(
t j(i) − t j−1

(i)

∣∣ x, hi

(φ
j
i )
, l
) n−1∏
k=j+1

S
I
j−1

φk
i

(
t j(i) − t j−1

(i)

∣∣ x, hj

(φk
i )
, l
)]

FI ki
(s|x, h(i), l) = 1− exp

[
−
∫ tk(i)+s

tk
(i)

f ki (u|x, h(i), l)

Sk
i (u|x, h(i), l)

du

]
for k = 0, . . . , n − 1
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Exposure-marginalized (natural) causal estimands

Exposure-marginalized (natural) causal estimands

Susceptibility effect

SEi (t, x(i)) = E
[
Yi

(
t; 1, x(i),H∗

(i)(x(i))
)
− Yi

(
t; 0, x(i),H∗

(i)(x(i))
)]

Infectiousness effect

IEi (t, xi , x(i)) = E
[
Yi

(
t; xi , 1,H(i)(x(i))

)
− Yi

(
t; xi , 0,H(i)(x(i))

)]
Contagion effect

CEi (t, xi , x(i), x
′
(i)) = E

[
Yi

(
t; xi , x(i),H∗

(i)(x(i))
)
− Yi

(
t; xi , x(i),H∗

(i)(x
′
(i))

)]
Susceptibility effect → shows if the vaccine protects treated individual

Infectiousness effect → shows if the vaccine decreases transmission
ability

Contagion effect → shows if the disease is contagious
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Traditional causal estimands in cluster studies

Direct effect:

DE (t) = E[Yi (t)|Xi = 1]− E[Yi (t)|Xi = 0]

Indirect effect:

IDE (t) =
∑

|x(i)|= n
2

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))

−
∑

|x(i)|=0

E[Yi (t)|Xi = 0,X(i) = x(i)]p(x(i))

[1] Longini et al. Statistical inference for infectious diseases: risk-specific household and community transmission parameters.
American Journal of Epidemiology, 128(4):845–859, 1988.
[2] Halloran et al. Direct and indirect effects in vaccine efficacy and effectiveness. American Journal of Epidemiology,
133(4):323–331, 1991.
[3] Halloran et al. Exposure efficacy and change in contact rates in evaluating prophylactic HIV vaccines in the field. Statistics
in Medicine, 13(4):357–377, 1994.
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Simulation: Estimations of causal estimands

Cluster Treatment
Probability estimands

ĈE ŜE ˆIE DE(t) IDE(t)

2 Obs. 0.005 -0.015 -0.036 -0.013 -0.036
Bernoulli 0.004 -0.015 -0.036 -0.014 -0.038
Block 0.004 -0.013 -0.036 0.025 -
Cluster 0.004 -0.013 -0.035 -0.048 -

4 Obs. 0.026 -0.014 -0.084 -0.012 -0.073
Bernoulli 0.025 -0.013 -0.082 -0.012 -0.063
Block 0.026 -0.015 -0.082 0.016 -
Cluster. 0.025 -0.014 -0.083 -0.099 -

8 Obs. 0.068 -0.013 -0.131 -0.010 -0.088
Bernoulli 0.069 -0.014 -0.133 -0.010 -0.096
Block 0.069 -0.014 -0.132 0.010 -
Cluster 0.070 -0.016 -0.132 -0.154 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Other relevant work and future direction

We further apply a generalized Cox-type transmission hazard model
to facilitate the inference of causal estimands parametrically or
semi-parametrically.

We promote hazard ratio as alternative causal estimands for the
susceptibility and infectiousness effect, and compared them to existing
estimands for vaccine efficacy.

Extend current research on causal identification for contagious
outcomes to more realistic scenarios, for example, relaxing
requirement on accurate infection times, accommodating incomplete
knowledge of transmission network, allowing recovering and
re-infection of outcomes.
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Causal inference and missing data imputation for
non-stationary time series data in mobile health

joint work with Xinru Wang, Dost Ongur, Lisa Dixon, Justin T. Baker,
Jukka-Pekka Onnela, Linda Valeri

References:

Xiaoxuan Cai, Xinru Wang, Lisa Dixon, Justin T. Baker, Jukka-Pekka Onnela, Linda
Valeri (2021) State space model multiple imputation for missing data in non-stationary
multivariate time series. (Manuscript accepted by NeurIPS 2021 Workshop on Causal
Inference Challenges in Sequential Decision Making: Bridging Theory and Practice)

Xiaoxuan Cai, Jukka-Pekka Onnela, Justin T. baker, Linda Valeri (2021) Causal
inference for non-stationary multivariate time series data from mobile devices in N-of-1
studies.

Linda Valeri, Xiaoxuan Cai, Aijin Wang, Zixu Wang, Habiballah Rahimi Eichi, Einat
Liebenthal, Scott Rauch, Dost Ongur, Russell Schutt, Lisa Dixon, Justin Baker,
Jukka-Pekka Onnela (2021). Smartphone-based markers of social networks in
schizophrenia and bipolar disorder.
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Causal inference in mHealth

“mHealth is the use of mobile and wireless devices (cell phones, tablets,
etc.) to improve health outcomes, health care services, and health
research.” – NIH

Smartphone penetration[1] Mobile health[2]

[1] https://www.statista.com/statistics/201183/forecast-of-smartphone-penetration-in-the-us/
[2] https://www.shutterstock.com/g/maschatace
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Bipolar Longitudinal Study (McLean Hospital)
The study follows 73 patients with severe mental illness (SMI), and explores how
passive sensor data is linked to moods and cognitive status.

DSM-V diagnosis established once enrolled

Monthly assessment of clinical symptoms (e.g., PANSS, MADRS, ...)

User-reported survey data via the Beiwe app (mood, life-habits, in-person
interactions, ...)

Passively collected telecommunication data (call and text logs), GPS data,
and accelerometer data using smartphones and fitness trackers

EHR data about medication use and psychotherapy

Beiwe app GEVEActiv watch Samsung Galaxy Note 8
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Bipolar Longitudinal Study (McLean Hospital)
The study follows 73 patients with severe mental illness (SMI), and explores how
passive sensor data is linked to moods and cognitive status.

DSM-V diagnosis established once enrolled

Monthly assessment of clinical symptoms (e.g., PANSS, MADRS, ...)

User-reported survey data via the Beiwe app (mood, life-habits, in-person
interactions, ...)

Passively collected telecommunication data (call and text logs), GPS data,
and accelerometer data using smartphones and fitness trackers

EHR data about medication use and psychotherapy

Our research of interest

Evaluate the causal effect of social support on mood improvement in
patients with serious mental illness in an observational N-of-1 study.
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Bipolar Longitudinal Study (McLean Hospital)
Focus on one female participant Bipolar I disorder, who has been followed up
from 03/05/2018 to 2020/20/10 (708 days).

Outcome (Yt): a self-reported composite index for negative moods, including
being afraid, anxious, ashamed, hostile, stressed, upset, irritable and lonely.

Missing rates: 23.31%
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Bipolar Longitudinal Study (McLean Hospital)
Focus on one female participant Bipolar I disorder, who has been followed up
from 03/05/2018 to 2020/20/10 (708 days).

Outcome (Yt): a self-reported composite index for negative moods, including
being afraid, anxious, ashamed, hostile, stressed, upset, irritable and lonely.

Exposures (Xt): passively collected degree of calls and texts

Confounders (Ct): passively collected accelerometer data and temperature

Temperature is obtained from National Centers for Environmental Information (NOAA)
Database. Physical activity is processed following Bai (2013,2014). Missing rates: 0%
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Causal structure for the Bipolar Longitudinal Study

Outcome (Yt): self-reported negative mood of the patient

Exposure (Xt): degree of calls and texts

Confounders (Ct): physical activity, temperature, ...

Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Yt−2 Yt−1 Yt

Ct−2 Ct−1 Ct
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How to deal with missing data for non-stationary

multi-variate time series in N-of-1 studies?
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Problem due to missing data in mHealth
Denote outcome as Yt , exposure as Xt , and other confounders as Ct .
Assume true data generation process as

Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Yt−2 Yt−1 Yt

Ct−2 Ct−1 Ct

High-autocorrelation with lagged values of the variables

Elevated missing rate due to including previous values of variables
study the effect of Xt on Yt → Yt−1 is included

Personalized monitoring of a single individual

Non-stationary multi-variate time series
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Problem due to missing data in mHealth
Denote outcome as Yt , exposure as Xt , and other confounders as Ct .
Assume true data generation process as

Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Yt−2 Yt−1 Yt

Ct−2 Ct−1 Ct

High-autocorrelation with lagged values of the variables

Elevated missing rate due to including previous values of variables
study the effect of Xt on Yt → Yt−1 is included
→ increase missing rate 50.1% → 74.1%

Personalized monitoring of a single individual

Non-stationary multi-variate time series
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Existing methods for missing data

Longitudinal studies:
▶ Mean imputation, Last-observation-carried-forward (LOCF) imputation,

Linear or spline imputation, ...
▶ Multiple imputation

Univariate time series:
Simple moving average, Exponential weighted moving average, ARIMA, ...

Multivariate time series:
Recurrent neural network, Generative adversarial network, ...

Complete case analysis
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Existing methods for missing data

Longitudinal studies:
▶ Mean imputation, Last-observation-carried-forward (LOCF) imputation,

Linear or spline imputation, ... → Biased
▶ Multiple imputation → Based on static models and stationarity

Univariate time series:
Simple moving average, Exponential weighted moving average, ARIMA, ...
→ not appropriate for multivariate time series

Multivariate time series:
Recurrent neural network, Generative adversarial network, ...
→ require multiple subjects, not appropriate for N-of-1 studies

Complete case analysis → break temporal structure, to be evaluated

New imputation method for non-stationary multi-variate time series is
needed.
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Simulation: non-stationary with change points and random
walk

Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Yt−2 Yt−1 Yt

Ct−2 Ct−1 Ct

Yt = β0,t + ρYt−1 + β1,tXt + β2Xt−1 + βcCt + vt , vt ∼ N(0,V )

where

Random walk intercept β0,t = 40 + β0,t−1 + wt , wt ∼ N(0, 1).

Periodic coefficient β1,t = −1.5 for t = 1, . . . , 400, 701, . . . , 1000 and
β1,t = −2.5 for t = 401, . . . , 700
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Simulation: estimated β̂2,t under existing methods
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State space model multiple imputation (SSMimpute)

start Make initial guess of missing outcomes and substitute

fit state space model and estimate coefficients

Apply multiple imputation to get new estimates
for coefficients and combine by Robin’s Rule

Update new guess on missing outcomes and substitute

check convergence

return converged model and estimated coefficients end

for kth iteration, k = 1, 2, . . .

yes

no
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State-space model imputation (SSMmp)

Remark1

The state space model reveals its structure as well as its unknown
parameters along with iterations until convergence.

Remark2

Missing values are only imputed for missing lagged outcomes in the
confounder adjustment set, not for the missing outcome in the response
variable.

Assumption

We require state space model to be correctly specified with
no unmeasured confounders for unbiased estimation of the causal effect.
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Simulation: estimated β̂2,t under existing methods

Xiaoxuan Cai (Columbia) Causal inference under interference January 24, 2022 28 / 43



Conclusions of simulations: (see more results in the paper)

For stationary time series,

Mean imputation, LOCF, linear and spline imputations are biased.

Complete case analysis, multiple imputation, and SSMimpute are
unbiased. Multiple imputation and SSMimpute are more efficient
than complete case analysis.

For non-stationary time series,

Complete case analysis breaks temporal structure and induces bias in
estimation.

Mean imputation, LOCF, linear and spline interpolation, and multiple
imputation are biased.

SSMimpute provides unbiased estimation for time-varying coefficients,
and is more efficient than complete case analysis.
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Estimation for the Bipolar Longitudinal Study

We estimate the association between the degree of calls and texts and the
negative mood, controlling for physical activity and temperature.

Outcome: negative mood (Yt)

Exposures: degree of calls (X1,t) and texts (X2,t)

Covariates: temperature (Tempt), past physical activity (PAt)

Yt = interceptt + ρtYt−1 + β11,tXcalls,t + β12,tXcalls,t−1

+ β21,tXtexts,t + β22,tXtexts,t−1 + βtemp,tTempt + βPA,tPAt + vt

Missing rate before imputation → 40.4%
Missing rate after imputation → 23.3%
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Estimation result: estimated coefficient for degree of
outgoing texts
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Estimation result: compared to multiple imputation

Yt = interceptt + ρtYt−1 + β11,tXcalls,t + β12,tXcalls,t−1

+ β21,tXtexts,t + β22,tXtexts,t−1 + βtemp,tTempt + βPA,tPAt + vt

SSMimpute (n=542) multiple imputation (n=542)

Estimate 90% CI Estimate 90% CI
interceptt (random walk) (random walk)
ρt (for Yt−1) 0.64 (0.57,0.71) 0.11 (-0.14,0.36)
β11,t -0.14 (-0.27,0.00) -0.11 (-0.23,0.01)
β12,t 0.00 (-0.12,0.12) -0.05 (-0.16,0.07)
β21,t (period 1) -0.03 (-0.30,0.24) -0.02 (-0.27,0.23)
β21,t (period 2) -0.49 (-0.78,-0.21) -0.38 (-0.65,-0.1)
β22,t -0.17 (-0.37,0.03) -0.23 (-0.42,-0.05)
βPA,t (period 1) -5.87 (-16.73,5.00) -3.94 (-18.65,10.76)
βPA,t (period 2) -12.19 (-21.27,-3.11) -16.96 (-32.94,-0.98)
βPA,t (period 3) 2.31 (-1.00,5.62) 1.64 (-3.97,7.25)
βtemp,t -0.01 (-0.03,0.01) -0.01 (-0.03,0.01)
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Summary

Existing imputation methods mostly assume the time series to be
stationary.

We proposed a multiple imputation algorithm based on state-space
model, which applies to non-stationary multi-variate time series of a
single subject.

The proposed imputation method provides unbiased coefficient
estimation for non-stationary time series with missing outcomes.

Limitation and future work:

Extend the SSMimpute method to missing data in exposures and
covariates.

Apply more flexible state space modeling than linear regression

The current model may suffer from unmeasured confounders.
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How to quantify the causal effects of exposure time series

on the outcome time series in short- and long-term?

(Brief)
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Causal structure of the Bipolar Longitudinal Study
Outcome (Yt): self-reported negative mood of the patient

Exposure (Xt): degree of calls and texts

Confounders (Ct): physical activity, temperature, ...

Yt−2 Yt−1 Yt

Xt−2 Xt−1 Xt

Ct−2 Ct−1 Ct

Our research of interest

Evaluate the causal effect of social support on mood improvement in
patients with serious mental illness in an observational N-of-1 study.
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Causal estimand

Causal Quantities of interest: contemporaneous effect

E[Yt(xt = 1)]− E[Yt(xt = 0)]

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

Ct−3 Ct−2 Ct−1 Ct

Causal diagram Estimated effect in BLS study
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Causal estimand

Causal Quantities of interest: 1-lag total effect

E[Yt(xt−1 = 1,Xt)]− E[Yt(xt−1 = 0,Xt)]

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

Ct−3 Ct−2 Ct−1 Ct

Causal diagram Estimated effect in BLS study
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Causal estimand

Causal Quantities of interest: 2-lag total effect

E[Yt(xt−2 = 1,X(t−1):t)]− E[Yt(xt−2 = 0,X(t−1):t)]

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

Ct−3 Ct−2 Ct−1 Ct

Causal diagram Estimated effect of in BLS study
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Causal estimand

Causal Quantities of interest: 3-lag total effect

E[Yt(xt−3 = 1,X(t−2):t)]− E[Yt(xt−3 = 0,X(t−2):t)]

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

Ct−3 Ct−2 Ct−1 Ct

Causal diagram Estimated effect in BLS study
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Estimated contemporaneous and 1-, 2- and 3-lag total
effect of degree of texts in the BLS study
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Estimated contemporaneous and 1-, 2- and 3-lag total
effect of degree of texts in the BLS study
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Estimated contemporaneous and 1-, 2- and 3-lag total
effect of degree of texts in the BLS study
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Summary

We propose a collection of causal estimands for non-stationary
multivariate time series in N-of-1 studies, summarizing how
time-varying exposures affect outcomes in the short- and long- term

We provide causal identification for dynamic exposure effects in the
presence of feedback between exposures, outcomes, and covariates
using g-formula with the state space model.

We propose graphical tools for checking positivity assumption over
different length of exposures, and design optimal treatment strategy
under constrains from positivity assumption.
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Future direction and limitations

Limitation and future work:

Extend causal identification for continuous outcome to binary or
ordinal outcome.

Employ machine learning algorithms for more flexible model fitting.

Apply mediation analysis to decompose long-term effects into
different mechanism.

The current model may suffer from unmeasured confounders.
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