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Infectious disease and vaccination
Distinct mechanisms of infectious disease interventions/vaccinations,

Direct protection for the treated individuals:
- direct effect, vaccine efficacy, susceptibility effect...

Indirect protection for the surrounding individuals:
- indirect effect, herd immunity...

Vaccines for Polio, Influenza, HIV/AIDS, Malaria and etc.

Direct protection Indirect protection
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Why infectious disease is difficult to study?

Research on transmission of infectious disease has some unique features
and challenges.

The infection outcome of one individual also depends on others’
treatments, conditional on other individuals being infected. –
Interference

The outcome of interest (infection) is transmissible, so outcomes are
not independent from each other. – Contagion

The infection times of others compose an important factor for the
infection outcome – exposure to infection

Individuals’ interaction along the transmission process reveals
essential information about transmission mechanism.

One infection outcome depends on (i) its own treatment, (ii)
treatments of others, and (iii) infection times of others.
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Challenges for causal identification
Consider a interconnected four individuals with treatment (X1,X2,X3,X4)
and infection outcome (Y1,Y2,Y3,Y4).

X1 Y1

X2 Y2

X3 Y3

X4 Y4

interference

contagion

The graph is not an acyclic directed graph (DAG).
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How to solve the problem?

Can randomization solve the problem?

Even under randomization, direct comparisons of treated and
untreated individuals may not be valid due to differential “exposure to
infection”.

For example, if vaccinated individuals get infected later in general,
then later infected, vaccinated subjects face higher exposure to
infection, comparing to unvaccinated, earlier infected individuals.
→ not a fair comparison !
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Propose new methodology to evaluate interventions effects
for contagious outcomes

We will provide new methods that

Do not depend on certain study design or randomization strategy

Apply to various transmission dynamics, cluster size and observational
time

Incorporate individual- and cluster-level covariates

Yield biologically meaningful causal estimands for direct and indirect
protection provided by interventions

Allow flexible statistical inferential framework, ranging from
parametric, semi-parametric to non-parametric estimation
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Symmetric partnership models

Partnership models have been widely understood as a useful framework to
clarify causal relationship in epidemiology, and lay the foundation for more
complex settings.
Consider two individuals with treatment X1 and X2 and infection outcome
Y1 and Y2.

X1 Y1

X2 Y2

The graph is not an acyclic directed graph (DAG).
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Unique challenges for causal identification under contagion

Problem: Differentiating exposure to infection after randomization

Solution:

Add a component of ”exposure to infection” (other’s infection times) into
the counterfactual outcome definition for a fair comparison.

Problem: Bidirectional arrow in the causal diagram

Solution:

Transform the cyclic diagram into traditional DAG by separating the
transmission process into exclusive possibilities.
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Notation

For the symmetric partnership models, consider individual 1 and 2 and let,

Treatment assignment: X = (X1,X2)

Infection time: Ti for i = 1, 2

Infection outcome: Yi (t) ≡ 1{t ≥ Ti} for i = 1, 2

Isolated infection time: I 0
i for i = 1, 2

Extra infection time after partner’s infection: I 1
i = Ti − I 0

j for i 6= j

Counterfactual infection outcome Yi (t; I 0
j = s,X = x) for j 6= i and

i = 1, 2, when we fix I 0
j = s and X = x.

Goal:

Identify Yi (t; s, x) under joint intervention (s, x) for i = 1, 2
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Clusters of 2 individuals

case 1 case 2

0 s

Ti = I0iTi = I1i + t(1)
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Clusters of 2 individuals

case 1 case 2

(1)

i

(1)

i

0 s
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Clusters of 2 individuals

case 1 case 2

(1)

i

(1)

i

0 s

Ti Ti
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Clusters of 2 individuals

case 1 case 2

(1)

i

(1)

i

0 s

Ti Ti

I0i = Ti − 0 I1i = Ti − s
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Clusters of 2 individuals

case 1 case 2

(1)

i

(1)

i

0 s

Ti Ti

I0i = Ti − 0 I1i = Ti − s

Ti = I0i Ti = I1i + s
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Main Result

Use subject i as a focal subject

T2(x) =

{
I 0
i (xi ) if I 0

i (xi ) < I 0
j (xj)

s + I 1
i (t(1); x) otherwise

Theorem
The average risk of infection by time t for the focal individual i , which is
E[Yi (t; s, x)], is identified as:

E[Y2(t; s, x)] = 1 · p2(s|x) + E[Y2(t)|T2 ≥ s,T1 = s,X = x] · [1− p2(s|x)]

where p2(s|x) = 1− exp[−
∫ s

0
Pr(T2=u,T1>u|X=x)
Pr(T2>u,T1>u|X=x)du]
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Causal Diagram

After we split Ti as Wi and Zi , we have a acyclic causal diagram.

X1 I01 I11 T1

X2 I02 I12 T2

Note: Covariates L are omitted for simplicity of the representation.
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Simulation
We simulate N=100,000 partnerships with exogenous hazard α(t) = 0.5
and within-pair hazard γ(t) = 2. Vaccinations decrease risks by 50%,
which is eβ1 = eβ2 = 0.5. We choose s = 1 and s ′ = 2.
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Controlled Causal estimands

Controlled causal estimands

Susceptibility effect (s > 0)

SE (t, s, x1) = E[Y2(t; s, x1, 1)− Y2(t; s, x1, 0)]

Infectiousness effect (s > 0)

IE (t, s, x2) = E[Y2(t; s, 1, x2)− Y2(t; s, 0, x2)]

Contagion effect (s 6= s ′ and X = (0, 0))

CE (t, s, s ′) = E[Yi (t; s ′, 0, 0)− Yi (t; s, 0, 0)]

Contagion effect → shows if the disease is contagious

Susceptibility effect → shows if the vaccine protects treated individual

Infectiousness effect → shows if the vaccine decreases transmission
ability
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Simulation: Estimates of controlled causal estimands
We simulate N=100,000 partnerships with exogenous hazard α(t) = 0.5
and within-pair hazard γ(t) = 2. Vaccinations decrease risks by 50%,
which is eβ1 = eβ2 = 0.5. We choose s = 1 and s ′ = 2.
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Simulation: Estimations of natural causal estimands

Simulation Treatment CE(t, 0, 0) SE(t, 0) IE(t, 0) DE(t) IDE(t)

Constant hazards Obs. 0.12 -0.14 -0.19 -0.16 -0.20
Bernoulli 0.12 -0.14 -0.19 -0.16 -0.20
Block - - - 0.06 -
Cluster - - - -0.39 -

Constant hazards Obs. 0.00 -0.18 0.00 -0.17 0.00
without contagion Bernoulli 0.00 -0.18 0.00 -0.18 0.00

Block - - - -0.18 -
Cluster - - - -0.18 -

Time-varying hazards Obs. 0.12 -0.14 -0.20 -0.22 -0.21
Bernoulli 0.12 -0.14 -0.20 -0.21 -0.22
Block - - - 0.08 -
Cluster - - - -0.50 -

Time-varying hazards Obs. 0.00 -0.28 0.00 -0.28 0.00
without contagion Bernoulli 0.00 -0.28 0.00 -0.28 0.00

Block - - - -0.28 -
Cluster - - - -0.28 -

Direct effect: DE(t) = E[Yi (t)|Xi = 1]− E[Yi (t)|Xi = 0]

Indirect effect: IDE(t) = E[Yi (t)|Xj = 1]− E[Yi (t)|Xj = 0]
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Clusters of 4 individuals

case 1 case 2 case 3 case 4

0 t(1) t(2) t(3)

Ti = I0i Ti = I1i + t(1)
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Clusters of 4 individuals

case 1 case 2 case 3 case 4
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Clusters of 4 individuals

case 1 case 2 case 3 case 4
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Clusters of 4 individuals

case 1 case 2 case 3 case 4
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Clusters of 4 individuals

case 1 case 2 case 3 case 4
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Main Result: Exposure-controlled potential outcome

Theorem: Identification of exposure-controlled potential outcomes

Under conventional assumptions in causal inference, the potential outcome
under a deterministic infection times of others h(i) and treatment x is

E
[
Yi (t; h(i), x)

∣∣ L = l
]
=

n−1∑
j=0

[
F
I
j
i
(min{t, t j+1

(i) } − t j(i) | x, h(i), l
) j−1∏
k=0

(
1− FI ki

(tk+1
(i) − tk(i) | x, h(i), l)

)]

where F
I ji

(s | x, h(i), l) is identified by

F
I
j
i
(s|x, h(i), l) = 1− exp

[
−
∫ t

j
(i)

+s

t
j
(i)

f ji (u|x, h(i), l)

S j
i (u|x, h(i), l)

du
]
for j = 0, . . . , n − 1
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Simulation: Estimations of causal estimands

Cluster Treatment
Probability estimands

ĈE(t, 0, 0, 1) ŜE(t, 0) ˆIE(t, 0, 0) DE(t) IDE(t)

Constant external and internal hazards

2 Obs. 0.005 -0.015 -0.036 -0.013 -0.036
Bernoulli 0.004 -0.015 -0.036 -0.014 -0.038
Block 0.004 -0.013 -0.036 0.025 -
Cluster 0.004 -0.013 -0.035 -0.048 -

4 Obs. 0.026 -0.014 -0.084 -0.012 -0.073
Bernoulli 0.025 -0.013 -0.082 -0.012 -0.063
Block 0.026 -0.015 -0.082 0.016 -
Cluster 0.025 -0.014 -0.083 -0.099 -

8 Obs. 0.068 -0.013 -0.131 -0.010 -0.088
Bernoulli 0.069 -0.014 -0.133 -0.010 -0.096
Block 0.069 -0.014 -0.132 0.010 -
Cluster 0.070 -0.016 -0.132 -0.154 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Stochastic model for disease transmission

λi(t) =
!
eβ1xi+θT

1 li
"
×

#
α(t) +

$
j ∕=i yj(t)γ(t− Tk)e

β2xj+θT
2 lxj

%

time-varying hazard
outside household

time-varying hazard
from infectious household members

hazardi(t) = [susceptibilityi]× [total exposure to infection(t)]

direct protection
of vaccination

indirect protection
of vaccination

α(t) is exogenous hazard of infection, γ(t) is endogenous hazard of
transmission between individuals

β1 is for susceptibility effect, β2 is for infectiousness effect

θ1 and θ2 are covariate effects of susceptibility and infectiousness
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New vaccine estimands based on hazards

Controlled hazard ratio vaccine effects

Susceptibility hazard ratio:

HSEC (t, x(i), h(i), l) =
λi (t | 1, x(i), h(i), l)

λi (t | 0, x(i), h(i), l)
= eβ1

Infectiousness hazard ratio:

HIEC (t, hj , h
′
j , x(j), h(i,j), l) =

λi (t|1,x(j),h
′
j ,h(i,j),l)−λi (t|1,x(j),hj ,h(i,j),l)

λi (t|0,x(j),h
′
j ,h(i,j),l)−λi (t|0,x(j),hj ,h(i,j),l)

= eβ2

where yj(t) = 1 as specified in h′j , and yj(t) = 0 as specified in hj .

Contagion cumulative hazard ratio:

HCEC (t; h
′′

j , h
′
j , h(i,j), l) =

∫ t
0

[
λi (u;0,h′j (t),h(i,j),l)−λi (u;0,hj (t),h(i,j),l)

]
du∫ t

0

[
λi (u;0,h

′′
j (t),h(i,j),l)−λi (u;0,hj (t),h(i,j),l)

]
du

=

∫ t
t′
j
γ(u)du∫ t

t′′
j
γ(u)du

where yj(t) = 1 as specified in h′j , and yj(t) = 0 as specified in hj .
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Simulation: Estimations of causal estimands

Cluster Treatment
Hazard estimands Probability estimands

β̂1 β̂2 ĈE ŜE ˆIE DE(t) IDE(t)

Constant external and internal hazards

2 Obs. -0.119 -2.271 0.005 -0.015 -0.036 -0.013 -0.036
Bernoulli -0.115 -2.334 0.004 -0.015 -0.036 -0.014 -0.038
Block -0.102 -2.364 0.004 -0.013 -0.036 0.025 -
Cluster -0.103 -2.288 0.004 -0.013 -0.035 -0.048 -

4 Obs. -0.105 -2.368 0.026 -0.014 -0.084 -0.012 -0.073
Bernoulli -0.105 -2.286 0.025 -0.013 -0.082 -0.012 -0.063
Block -0.116 -2.278 0.026 -0.015 -0.082 0.016 -
Cluster. -0.107 -2.323 0.025 -0.014 -0.083 -0.099 -

8 Obs. -0.100 -2.287 0.068 -0.013 -0.131 -0.010 -0.088
Bernoulli -0.106 -2.331 0.069 -0.014 -0.133 -0.010 -0.096
Block -0.111 -2.311 0.069 -0.014 -0.132 0.010 -
Cluster -0.120 -2.299 0.070 -0.016 -0.132 -0.154 -

Simulation under eβ1 = 0.9, eβ2 = 0.1, α(t) = 0.3, γ(t) = 3 and eθ1 = eθ2 = 0.9.
Clusters of 2, 4, and 8 are observed at 0.4, 0.3 and 0.2 year.
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Summary

We articulate the causal structure between individuals’ treatments
and outcomes in infectious disease, and illustrate the identification
strategy for the potential outcomes under contagion, in the example
of inter-connected clusters.

A class of fundamental (controlled- and marginalized-) causal
estimands for the susceptibility, infectiousness and contagion effect of
vaccines are proposed, and comprehensively compared to popular
estimands in contemporary epidemiology.

We provide the identification of causal estimands non-parametrically,
and further apply a generalized Cox-type transmission hazard model
to facilitate the inference of causal estimands.

We promote hazard ratio as alternative causal estimands for the
susceptibility and infectiousness effect, and compared them to existing
estimands for vaccine efficacy.

Xiaoxuan Cai (Columbia University) Causal identification in infectious disease October 2, 2020 23 / 24



Acknowledgement

This work was supported by NIH grant 1DP2HD091799-01. Xiaoxuan Cai
was supported by a fellowship from Takeda Pharmaceutical Company.
We thank Peter Aronow, Olga Morozova, Virginia Pitzer for their great
suggestions.

xiaoxuan.cai@yale.edu
https://xiaoxuan-cai.github.io/

Xiaoxuan Cai (Columbia University) Causal identification in infectious disease October 2, 2020 24 / 24


	Causal inference for vaccine effects
	Partnership models in infectious disease

